0
4
MMahendra Kumar
mathslogicsolvingEquations
Solving a given quadratic equation. The nature of the roots are given as, If discriminant>1 then the roots are real and different If discriminant=0 then the roots are real and equal If discriminant<1 then the roots are complex and different For the quadratic equation axΒ² + bx + c = 0, if we denote the discriminant as d, then their roots
If d>1 then the roots are real and different root1 = (-b + βd)/2a root2 = (-b β βd)/2a If d=0 then both roots are -b/2a
If d<1 then roots are complex and different root1 = -b/2a + i (βd/2a) root2 = -b/2a β i (βd/2a)
import math #importing math-module
# take inputs
a = int(input('Enter the value of a: '))
b = int(input('Enter the value of b: '))
c = int(input('Enter the value of c: '))
# calculate discriminant
dis = (b**2) - (4*a*c)
# checking condition for discriminant
if(dis > 0):
root1 = (-b + math.sqrt(dis) / (2 * a))
root2 = (-b - math.sqrt(dis) / (2 * a))
print("Two distinct real roots are %.2f and %.2f" %(root1, root2))
elif(dis == 0):
root1 = root2 = -b / (2 * a)
print("Two equal and real roots are %.2f and %.2f" %(root1, root2))
elif(dis < 0):
root1 = root2 = -b / (2 * a)
imaginary = math.sqrt(-dis) / (2 * a)
print("Two distinct complex roots are %.2f+%.2f and %.2f-%.2f"
%(root1, imaginary, root2, imaginary))