F.avg_pool1d(input\, kernel_size\, stride=None\, padding=0),avg_pool2d(input\, kernel_size\, stride=None\, padding=0),avg_pool3d(input\, kernel_size\, stride=None\, padding=0),max_pool1d(input\, kernel_size\, stride=None\, padding=0),max_pool2d(input\, kernel_size\, stride=None\, padding=0,max_pool3d(input\, kernel_size\, stride=None\, padding=0),max_unpool1d(input\, indices\, kernel_size\, stride=None\, padding=0),max_unpool2d(input\, indices\, kernel_size\, stride=None\, padding=0),max_unpool3d(input\, indices\, kernel_size\, stride=None\, padding=0),lp_pool1d(input\, norm_type\, kernel_size\, stride=None),lp_pool2d(input\, norm_type\, kernel_size\, stride=None),adaptive_max_pool1d(input\, output_size),adaptive_max_pool2d(input\, output_size),adaptive_max_pool3d(input\, output_size),adaptive_avg_pool1d(input\, output_size),adaptive_avg_pool2d(input\, output_size),adaptive_avg_pool3d(input\, output_size)
      Python language logo
      your recipe card header background

      Pooling Function

      Pytorch Public Recipes

      Library: pytorch

      Shortcut: pytorch.f.pooling

      0 Comments

        Add Comment

        Log in to add a comment

        Codiga - All rights reserved 2022.