Resnet Bottleneck Block

    0

    0

    lucycodes42

    Pytorch Public Recipes

    Library: pytorch

    Shortcut: pytorch.layer.resnet.bottleneck

    class Bottleneck(nn.Module):
      # see https://pytorch.org/docs/0.4.0/_modules/torchvision/models/resnet.html 
      def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
    
      def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        out += residual
        out = self.relu(out)
        return out
    Codiga Logo
    Codiga Hub
    • Rulesets
    • Playground
    • Snippets
    • Cookbooks
    Legal
    • Security
    • Privacy Policy
    • Code Privacy
    • Terms of Service
    soc-2 icon

    We are SOC-2 Compliance Certified

    G2 high performer medal

    Codiga – All rights reserved 2022.